Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Neurosci ; 18: 1379076, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38660221

RESUMO

Exposure to microgravity (µg) results in a range of systemic changes in the organism, but may also have beneficial cellular effects. In a previous study we detected increased proliferation capacity and upregulation of genes related to proliferation and survival in boundary cap neural crest stem cells (BC) after MASER14 sounding rocket flight compared to ground-based controls. However, whether these changes were due to µg or hypergravity was not clarified. In the current MASER15 experiment BCs were exposed simultaneously to µg and 1 g conditions provided by an onboard centrifuge. BCs exposed to µg displayed a markedly increased proliferation capacity compared to 1 g on board controls, and genetic analysis of BCs harvested 5 h after flight revealed an upregulation, specifically in µg-exposed BCs, of Zfp462 transcription factor, a key regulator of cell pluripotency and neuronal fate. This was associated with alterations in exosome microRNA content between µg and 1 g exposed MASER15 specimens. Since the specimens from MASER14 were obtained for analysis with 1 week's delay, we examined whether gene expression and exosome content were different compared to the current MASER15 experiments, in which specimens were harvested 5 h after flight. The overall pattern of gene expression was different and Zfp462 expression was down-regulated in MASER14 BC µg compared to directly harvested specimens (MASER15). MicroRNA exosome content was markedly altered in medium harvested with delay compared to directly collected samples. In conclusion, our analysis indicates that even short exposure to µg alters gene expression, leading to increased BC capacity for proliferation and survival, lasting for a long time after µg exposure. With delayed harvest of specimens, a situation which may occur due to special post-flight circumstances, the exosome microRNA content is modified compared to fast specimen harvest, and the direct effects from µg exposure may be partially attenuated, whereas other effects can last for a long time after return to ground conditions.

2.
Nanotheranostics ; 8(3): 298-311, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38577321

RESUMO

Exosomes are nanosized extracellular vesicles secreted by all cell types, including canine adipose-derived stem cells (cADSCs). By mediating intercellular communication, exosomes modulate the biology of adjacent and distant cells by transferring their cargo. In the present work after isolation and characterization of exosomes derived from canine adipose tissue, we treated the same canine donors affected by hepatopathies with the previously isolated exosomes. We hypothesize that cADSC-sourced miRNAs are among the factors responsible for a regenerative and anti-inflammatory effect in the treatment of hepatopathies in dogs, providing the clinical veterinary field with an effective and innovative cell-free therapy. Exosomes were isolated and characterized for size, distribution, surface markers, and for their miRNomic cargo by microRNA sequencing. 295 dogs affected with hepatopathies were treated and followed up for 6 months to keep track of their biochemical marker levels. Results confirmed that exosomes derived from cADSCs exhibited an average diameter of 91 nm, and positivity to 8 known exosome markers. The administration of exosomes to dogs affected by liver-associated inflammatory pathologies resulted in the recovery of the animal alongside the normalization of biochemical parameters of kidney function. In conclusion, cADSCs-derived exosomes are a promising therapeutic tool for treating inflammatory disorders in animal companions.


Assuntos
Exossomos , Vesículas Extracelulares , MicroRNAs , Cães , Animais , MicroRNAs/genética , Exossomos/genética , Exossomos/metabolismo , Vesículas Extracelulares/metabolismo , Hepatite Crônica/metabolismo , Células-Tronco/metabolismo
3.
J Nanobiotechnology ; 22(1): 68, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369472

RESUMO

BACKGROUND: Plant-derived nanovesicles (PDNVs) are a novelty in medical and agrifood environments, with several studies exploring their functions and potential applications. Among fruits, apples (sp. Malus domestica) have great potential as PDNVs source, given their widespread consumption, substantial waste production, and recognized health benefits. Notably, apple-derived nanovesicles (ADNVs) can interact with human cell lines, triggering anti-inflammatory and antioxidant responses. This work is dedicated to the comprehensive biochemical characterization of apple-derived nanovesicles (ADNVs) through proteomic and lipidomic analysis, and small RNAs sequencing. This research also aims to shed light on the underlying mechanism of action (MOA) when ADNVs interface with human cells, through observation of intracellular calcium signalling in human fibroblasts, and to tackles differences in ADNVs content when isolated from fruits derived from integrated and organic production methods cultivars. RESULTS: The ADNVs fraction is mainly composed of exocyst-positive organelles (EXPOs) and MVB-derived exosomes, identified through size and molecular markers (Exo70 and TET-3-like proteins). ADNVs' protein cargo is heterogeneous and exhibits a diverse array of functions, especially in plant's protection (favouring ABA stress-induced signalling, pathogen resistance and Reactive Oxygen Species (ROS) metabolism). Noteworthy plant miRNAs also contribute to phytoprotection. In relation with human cells lines, ADNVs elicit spikes of intracellular Ca2+ levels, utilizing the cation as second messenger, and produce an antioxidant effect. Lastly, organic samples yield a substantial increase in ADNV production and are particularly enriched in bioactive lysophospholipids. CONCLUSIONS: We have conclusively demonstrated that ADNVs confer an antioxidant effect upon human cells, through the initiation of a molecular pathway triggered by Ca2+ signalling. Within ADNVs, a plethora of bioactive proteins, small RNAs, and lipids have been identified, each possessing well-established functions within the realm of plant biology. While ADNVs predominantly function in plants, to safeguard against pathogenic agents and abiotic stressors, it is noteworthy that proteins with antioxidant power might act as antioxidants within human cells.


Assuntos
Antioxidantes , Malus , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cálcio/metabolismo , Verduras , Proteômica , Malus/metabolismo , Transdução de Sinais
4.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983075

RESUMO

Small extracellular vesicles (sEVs) derived from mesenchymal stem cells (MSCs) have attracted growing interest as a possible novel therapeutic agent for the management of different cardiovascular diseases (CVDs). Hypoxia significantly enhances the secretion of angiogenic mediators from MSCs as well as sEVs. The iron-chelating deferoxamine mesylate (DFO) is a stabilizer of hypoxia-inducible factor 1 and consequently used as a substitute for environmental hypoxia. The improved regenerative potential of DFO-treated MSCs has been attributed to the increased release of angiogenic factors, but whether this effect is also mediated by the secreted sEVs has not yet been investigated. In this study, we treated adipose-derived stem cells (ASCs) with a nontoxic dose of DFO to harvest sEVs (DFO-sEVs). Human umbilical vein endothelial cells (HUVECs) treated with DFO-sEVs underwent mRNA sequencing and miRNA profiling of sEV cargo (HUVEC-sEVs). The transcriptomes revealed the upregulation of mitochondrial genes linked to oxidative phosphorylation. Functional enrichment analysis on miRNAs of HUVEC-sEVs showed a connection with the signaling pathways of cell proliferation and angiogenesis. In conclusion, mesenchymal cells treated with DFO release sEVs that induce in the recipient endothelial cells molecular pathways and biological processes strongly linked to proliferation and angiogenesis.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , Humanos , Células Cultivadas , Desferroxamina/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células-Tronco Mesenquimais/metabolismo , Quelantes de Ferro/farmacologia , Vesículas Extracelulares/metabolismo
5.
Int J Mol Sci ; 24(2)2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36675268

RESUMO

Several factors, such as ischemia, infection and skin injury impair the wound healing process. One common pathway in all these processes is related to the reactive oxygen species (ROS), whose production plays a vital role in wound healing. In this view, several strategies have been developed to stimulate the activation of the antioxidative system, thereby reducing the damage related to oxidative stress and improving wound healing. For this purpose, complex magnetic fields (CMFs) are used in this work on fibroblast and monocyte cultures derived from diabetic patients in order to evaluate their influence on the ROS production and related wound healing properties. Biocompatibility, cytotoxicity, mitochondrial ROS production and gene expression have been evaluated. The results confirm the complete biocompatibility of the treatment and the lack of side effects on cell physiology following the ISO standard indication. Moreover, the results confirm that the CMF treatment induced a reduction in the ROS production, an increase in the macrophage M2 anti-inflammatory phenotype through the activation of miRNA 5591, a reduction in inflammatory cytokines, such as interleukin-1 (IL-1) and IL-6, an increase in anti-inflammatory ones, such as IL-10 and IL-12 and an increase in the markers related to improved wound healing such as collagen type I and integrins. In conclusion, our findings encourage the use of CMFs for the treatment of diabetic foot.


Assuntos
Diabetes Mellitus , Campos Eletromagnéticos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Inflamação , Anti-Inflamatórios , Biofísica
6.
Cells ; 11(24)2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36552714

RESUMO

Skin ageing is strictly related to chronic inflammation of the derma and the decay of structural proteins of the extracellular matrix. Indeed, it has become common practice to refer to this phenomenon as inflammageing. Biotech innovation is always in search of new active principles that induce a youthful appearance. In this paper, apple-derived nanovesicles (ADNVs) were investigated as novel anti-inflammatory compounds, which are able to alter the extracellular matrix production of dermal fibroblasts. Total RNA sequencing analysis revealed that ADNVs negatively influence the activity of Toll-like Receptor 4 (TLR4), and, thus, downregulate the NF-κB pro-inflammatory pathway. ADNVs also reduce extracellular matrix degradation by increasing collagen synthesis (COL3A1, COL1A2, COL8A1 and COL6A1) and downregulating metalloproteinase production (MMP1, MMP8 and MMP9). Topical applications for skin regeneration were evaluated by the association of ADNVs with hyaluronic-acid-based hydrogel and patches.


Assuntos
Exossomos , Malus , Colágeno Tipo I/metabolismo , NF-kappa B/metabolismo , Malus/metabolismo , Regulação para Baixo , Exossomos/metabolismo , Metaloproteinases da Matriz/metabolismo
7.
Biomedicines ; 10(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36289611

RESUMO

Aortic valve stenosis has become the most common valvular disease in elderly patients. Several treatments are available such as surgical aortic valve replacement and transcatheter aortic valve implantation. To date, however, there is a need to discover alternative treatments that can delay the disease progression and, therefore, the implant of a prosthetic valve. In this regard, a decalcification procedure based on the use of ultrasonic waves could represent an innovative solution in transcatheter cardiovascular therapies. In this article, we describe an innovative transcatheter debridement device (TDD) that uses low-intensity ultrasound shock waves for calcium ablation from the native aortic valve and bioprosthetic valve. Mesenchymal stem cells were seeded onto pericardium-based scaffolds and committed into an osteogenic phenotype. After treatment with TDD, cell proliferation was analyzed, as well as lactate dehydrogenase release and cell morphology. The release of calcium and inflammation events were detected. The results confirmed that the TDD was able to induce a safe decalcification without any adverse inflammatory events.

8.
Int J Mol Sci ; 23(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36012558

RESUMO

The aim of this in vitro study was to investigate the commitment and behavior of dental pulp stem cells (DPSCs) seeded onto two different grafting materials, human dentin particulate (DP) and deproteinized bovine bone matrix (BG), with those cultured in the absence of supplements. Gene expression analyses along with epigenetic and morphological tests were carried out to examine odontogenic and osteogenic differentiation and cell proliferation. Compressive testing of the grafting materials seeded with DPSCs was performed as well. DPSC differentiation into odontoblast-like cells was identified from the upregulation of odontogenic markers (DSPP and MSX) and osteogenic markers (RUNX2, alkaline phosphatase, osteonectin, osteocalcin, collagen type I, bmp2, smad5/8). Epigenetic tests confirmed the presence of miRNAs involved in odontogenic or osteogenic commitment of DPSCs cultured for up to 21 days on DP. Compressive strength values obtained from extracellular matrix (ECM) synthesized by DPSCs showed a trend of being higher when seeded onto DP than onto BG. High expression of VEGF factor, which is related to angiogenesis, and of dentin sialoprotein was observed only in the presence of DP. Morphological analyses confirmed the typical phenotype of adult odontoblasts. In conclusion, the odontogenic and osteogenic commitment of DPSCs and their respective functions can be achieved on DP, which enables exceptional dentin and bone regeneration.


Assuntos
Osteogênese , Células-Tronco , Adulto , Animais , Regeneração Óssea , Bovinos , Diferenciação Celular/fisiologia , Proliferação de Células , Células Cultivadas , Polpa Dentária , Dentina , Humanos , Odontogênese/fisiologia , Osteogênese/genética , Células-Tronco/metabolismo
9.
Int J Mol Sci ; 23(15)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35897825

RESUMO

Regenerative medicine is the branch of medicine that effectively uses stem cell therapy and tissue engineering strategies to guide the healing or replacement of damaged tissues or organs. A crucial element is undoubtedly the biomaterial that guides biological events to restore tissue continuity. The polymers, natural or synthetic, find wide application thanks to their great adaptability. In fact, they can be used as principal components, coatings or vehicles to functionalize several biomaterials. There are many leading centers for the research and development of biomaterials in Italy. The aim of this review is to provide an overview of the current state of the art on polymer research for regenerative medicine purposes. The last five years of scientific production of the main Italian research centers has been screened to analyze the current advancement in tissue engineering in order to highlight inputs for the development of novel biomaterials and strategies.


Assuntos
Materiais Biocompatíveis , Medicina Regenerativa , Materiais Biocompatíveis/uso terapêutico , Polímeros , Transplante de Células-Tronco , Engenharia Tecidual , Cicatrização
10.
Pharmaceutics ; 14(5)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35631496

RESUMO

Craniofacial tissue reconstruction still represents a challenge in regenerative medicine. Mesenchymal stem cell (MSC)-based tissue engineering strategies have been introduced to enhance bone tissue repair. However, the risk of related complications is limiting their usage. To overcome these drawbacks, exosomes (EXOs) derived from MSCs have been recently proposed as a cell-free alternative to MSCs to direct tissue regeneration. It was hypothesized that there is a correlation between the biological properties of exosomes derived from the dental pulp and the age of the donor. The aim of the study was to investigate the effect of EXOs derived from dental pulp stem cells of permanent teeth (old donor group) or exfoliated deciduous teeth (young donor group) on MSCs cultured in vitro. Proliferation potential was evaluated by doubling time, and commitment ability by gene expression and biochemical quantification for tissue-specific factors. Results showed a well-defined proliferative influence for the younger donor aged group. Similarly, a higher commitment ability was detected in the young group. In conclusion, EXOs could be employed to promote bone regeneration, likely playing an important role in neo-angiogenesis in early healing phases.

11.
Cancer Sci ; 113(8): 2590-2599, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35633186

RESUMO

Preclinical forms of gastrointestinal stromal tumor (GIST), small asymptomatic lesions, called microGIST, are detected in approximately 30% of the general population. Gastrointestinal stromal tumor driver mutation can be already detected in microGISTs, even if they do not progress into malignant cancer; these mutations are necessary, but insufficient events to foster tumor progression. Here we profiled the tissue microbiota of 60 gastrointestinal specimens in three different patient cohorts-micro, low-risk, and high-risk or metastatic GIST-exploring the compositional structure, predicted function, and microbial networks, with the aim of providing a complete overview of microbial ecology in GIST and its preclinical form. Comparing microGISTs and GISTs, both weighted and unweighted UniFrac and Bray-Curtis dissimilarities showed significant community-level separation between them and a pronounced difference in Proteobacteria, Firmicutes, and Bacteroidota was observed. Through the LEfSe tool, potential microbial biomarkers associated with a specific type of lesion were identified. In particular, GIST samples were significantly enriched in the phylum Proteobacteria compared to microGISTs. Several pathways involved in sugar metabolism were also highlighted in GISTs; this was expected as cancer usually displays high aerobic glycolysis in place of oxidative phosphorylation and rise of glucose flux to promote anabolic request. Our results highlight that specific differences do exist in the tissue microbiome community between GIST and benign lesions and that microbiome restructuration can drive the carcinogenesis process.


Assuntos
Neoplasias Gastrointestinais , Tumores do Estroma Gastrointestinal , Microbiota , Transformação Celular Neoplásica , Neoplasias Gastrointestinais/genética , Tumores do Estroma Gastrointestinal/genética , Tumores do Estroma Gastrointestinal/patologia , Humanos , Mutação , Proteínas Proto-Oncogênicas c-kit/genética
12.
Int J Mol Sci ; 23(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35162968

RESUMO

The successful clinical application of bone tissue engineering requires customized implants based on the receiver's bone anatomy and defect characteristics. Three-dimensional (3D) printing in small animal orthopedics has recently emerged as a valuable approach in fabricating individualized implants for receiver-specific needs. In veterinary medicine, because of the wide range of dimensions and anatomical variances, receiver-specific diagnosis and therapy are even more critical. The ability to generate 3D anatomical models and customize orthopedic instruments, implants, and scaffolds are advantages of 3D printing in small animal orthopedics. Furthermore, this technology provides veterinary medicine with a powerful tool that improves performance, precision, and cost-effectiveness. Nonetheless, the individualized 3D-printed implants have benefited several complex orthopedic procedures in small animals, including joint replacement surgeries, critical size bone defects, tibial tuberosity advancement, patellar groove replacement, limb-sparing surgeries, and other complex orthopedic procedures. The main purpose of this review is to discuss the application of 3D printing in small animal orthopedics based on already published papers as well as the techniques and materials used to fabricate 3D-printed objects. Finally, the advantages, current limitations, and future directions of 3D printing in small animal orthopedics have been addressed.


Assuntos
Procedimentos Ortopédicos/instrumentação , Impressão Tridimensional/instrumentação , Animais , Humanos , Modelos Anatômicos , Modelos Animais , Próteses e Implantes
13.
Biomedicines ; 10(2)2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35203624

RESUMO

The constant dialogue between the plant world and the animal world (including man among them) has been known since the time of Adam and Eve, where an apple was the origin of the evils of the world. Apart from Snow White-who might have something to object to when it comes to the use of apples-fruits, plants, and natural extracts have been known for millennia as remedies for human health-related ailments. In the light of such evidence, the aim of the present work was to investigate from a biological point of view the potential role of apple exosomes in inflammatory processes on human cells. To this end we isolated and characterized apple exosomes and treated human cells such as macrophages and NCTC L929 as cancer cells in order to evaluate the tumorigenic and anti-inflammatory effect of apple exomes. Microscopic and molecular biology analyses were conducted to characterize exosomes and to assess cell proliferation, death, and miRNA line, as well as gene expression and the uptake of exosomes by cells. The results confirm the absolute biological safety of exosomes and their anti-inflammatory effect, mediated mainly by miRNA146 production by M2 macrophages.

14.
ACS Nanosci Au ; 2(4): 284-296, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37102062

RESUMO

In the past few decades, nanomedicine research has advanced dramatically. In spite of this, traditional nanomedicine faces major obstacles, such as blood-brain barriers, low concentrations at target sites, and rapid removal from the body. Exosomes as natural extracellular vesicles contain special bioactive molecules for cell-to-cell communications and nervous tissue function, which could overcome the challenges of nanoparticles. Most recently, microRNAs, long noncoding RNA, and circulating RNA of exosomes have been appealing because of their critical effect on the molecular pathway of target cells. In this review, we have summarized the important role of exosomes of noncoding RNAs in the occurrence of brain diseases.

15.
Nanomaterials (Basel) ; 11(12)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34947800

RESUMO

(1) Background: Implantation of metal-based scaffolds is a common procedure for treating several diseases. However, the success of the long-term application is limited by an insufficient endothelialization of the material surface. Nanostructured modifications of metal scaffolds represent a promising approach to faster biomaterial osteointegration through increasing of endothelial commitment of the mesenchymal stem cells (MSC). (2) Methods: Three different nanotubular Ti surfaces (TNs manufactured by electrochemical anodization with diameters of 25, 80, or 140 nm) were seeded with human MSCs (hMSCs) and their exosomes were isolated and tested with human umbilical vein endothelial cells (HUVECs) to assess whether TNs can influence the secretory functions of hMSCs and whether these in turn affect endothelial and osteogenic cell activities in vitro. (3) Results: The hMSCs adhered on all TNs and significantly expressed angiogenic-related factors after 7 days of culture when compared to untreated Ti substrates. Nanomodifications of Ti surfaces significantly improved the release of hMSCs exosomes, having dimensions below 100 nm and expressing CD63 and CD81 surface markers. These hMSC-derived exosomes were efficiently internalized by HUVECs, promoting their migration and differentiation. In addition, they selectively released a panel of miRNAs directly or indirectly related to angiogenesis. (4) Conclusions: Preconditioning of hMSCs on TNs induced elevated exosomes secretion that stimulated in vitro endothelial and cell activity, which might improve in vivo angiogenesis, supporting faster scaffold integration.

16.
Artigo em Inglês | MEDLINE | ID: mdl-34574676

RESUMO

Exercise generates reactive oxygen species (ROS), creating a redox imbalance towards oxidation when inadequately intense. Normobaric and hyperbaric oxygen (HBO) breathed while not exercising induces antioxidant enzymes expression, but literature is still poor. Twenty-two athletes were assigned to five groups: controls; 30%, or 50% O2; 100% O2 (HBO) at 1.5 or 2.5 atmosphere absolute (ATA). Twenty treatments were administered on non-training days. Biological samples were collected at T0 (baseline), T1 (end of treatments), and T2 (1 month after) to assess ROS, antioxidant capacity (TAC), lipid peroxidation, redox (amino-thiols) and inflammatory (IL-6, 10, TNF-α) status, renal function (i.e., neopterin), miRNA, and hemoglobin. At T1, O2 mixtures and HBO induced an increase of ROS, lipid peroxidation and decreased TAC, counterbalanced at T2. Furthermore, 50% O2 and HBO treatments determined a reduced state in T2. Neopterin concentration increased at T1 breathing 50% O2 and HBO at 2.5 ATA. The results suggest that 50% O2 treatment determined a reduced state in T2; HBO at 1.5 and 2.5 ATA similarly induced protective mechanisms against ROS, despite the latter could expose the body to higher ROS levels and neopterin concentrations. HBO resulted in increased Hb levels and contributed to immunomodulation by regulating interleukin and miRNA expression.


Assuntos
Oxigenoterapia Hiperbárica , MicroRNAs , Humanos , Inflamação , Estresse Oxidativo , Oxigênio
17.
Biomedicines ; 9(7)2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-34356888

RESUMO

A challenge in contractile restoration of myocardial scars is one of the principal aims in cardiovascular surgery. Recently, a new potent biological tool used within healing processes is represented by exosomes derived from mesenchymal stem cells (MSCs). These cells are the well-known extracellular nanovesicles released from cells to facilitate cell function and communication. In this work, a combination of elastomeric membranes and exosomes was obtained and tested as a bioimplant. Mesenchymal stem cells (MSCs) and macrophages were seeded into the scaffold (polycaprolactone) and filled with exosomes derived from MSCs. Cells were tested for proliferation with an MTT test, and for wound healing properties and macrophage polarization by gene expression. Moreover, morphological analyses of their ability to colonize the scaffolds surfaces have been further evaluated. Results confirm that exosomes were easily entrapped onto the surface of the elastomeric scaffolds, increasing the wound healing properties and collagen type I and vitronectin of the MSC, and improving the M2 phenotype of the macrophages, mainly thanks to the increase in miRNA124 and decrease in miRNA 125. We can conclude that the enrichment of elastomeric scaffolds functionalized with exosomes is as an effective strategy to improve myocardial regeneration.

18.
Nanomaterials (Basel) ; 11(3)2021 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-33809791

RESUMO

BACKGROUND: Electrospun fibers have attracted a lot of attention from researchers due to their several characteristics, such as a very thin diameter, three-dimensional topography, large surface area, flexible surface, good mechanical characteristics, suitable for widespread applications. Indeed, electro-spinning offers many benefits, such as great surface-to-volume ratio, adjustable porosity, and the ability of imitating the tissue extra-cellular matrix. METHODS: we processed Poly ε-caprolactone (PCL) via electrospinning for the production of bilayered tubular scaffolds for vascular tissue engineering application. Endothelial cells and fibroblasts were seeded into the two side of the scaffolds: endothelial cells onto the inner side composed of PCL/Gelatin fibers able to mimic the inner surface of the vessels, and fibroblasts onto the outer side only exposing PCL fibers. Extracellular matrix production and organization has been performed by means of classical immunofluorescence against collagen type I fibers, Scanning Electron-Microscopy (SEM) has been performed in order to evaluated ultrastructural morphology, gene expression by means gene expression has been performed to evaluate the phenotype of endothelial cells and fibroblasts. RESULTS AND CONCLUSION: results confirmed that both cells population are able to conserve their phenotype colonizing the surface supporting the hypothesis that PCL scaffolds based on electrospun fibers should be a good candidate for vascular surgery.

19.
Int J Mol Sci ; 21(24)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419357

RESUMO

Gastric cancer (GC) is the fifth most prevalent cancer worldwide and the third leading cause of global cancer mortality. With the advances of the omic studies, a heterogeneous GC landscape has been revealed, with significant molecular diversity. Given the multifaceted nature of GC, identification of different patient subsets with prognostic and/or predictive outcomes is a key aspect to allow tailoring of specific treatments. Recently, the involvement of the microbiota in gastric carcinogenesis has been described. To deepen this aspect, we compared microbiota composition in signet-ring cell carcinoma (SRCC) and adenocarcinoma (ADC), two distinct GC subtypes. To this purpose, 10 ADC and 10 SRCC and their paired non-tumor (PNT) counterparts were evaluated for microbiota composition through 16S rRNA analysis. Weighted and unweighted UniFrac and Bray-Curtis dissimilarity showed significant community-level separation between ADC and SRCC. Through the LEfSe (linear discriminant analysis coupled with effect size) tool, we identified potential microbial biomarkers associated with GC subtypes. In particular, SRCCs were significantly enriched in the phyla Fusobacteria, Bacteroidetes, Patescibacteria, whereas in the ADC type, Proteobacteria and Acidobacteria phyla were found. Overall, our data add new insights into GC heterogeneity and may contribute to deepening the GC classification.


Assuntos
Adenocarcinoma/microbiologia , Carcinoma de Células em Anel de Sinete/microbiologia , Microbiota/genética , Neoplasias Gástricas/microbiologia , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Adenocarcinoma/genética , Adenocarcinoma/patologia , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Carcinoma de Células em Anel de Sinete/genética , Carcinoma de Células em Anel de Sinete/patologia , Feminino , Fusobactérias/genética , Heterogeneidade Genética , Humanos , Masculino , Medicina de Precisão , Prognóstico , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
20.
Cancers (Basel) ; 11(7)2019 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-31336701

RESUMO

Background: A wealth of evidence has shown that microRNAs (miRNAs) can modulate specific genes, increasing our knowledge on the fine-tuning regulation of protein expression. miR-221 and miR-222 have been frequently identified as deregulated across different cancer types; however, their prognostic significance in cancer remains controversial. In view of these considerations, we performed an updated systematic review and meta-analysis of published data investigating the effects of miR-221/222 on overall survival (OS) and other secondary outcomes among cancer patients. A systematic search of PubMed, Web of Knowledge, and Cochrane Library databases was performed. Hazard ratios (HRs) and 95% confidence intervals (95% CIs) were used to assess the strength of association. Results: Fifty studies, analyzing 6086 patients, were included in the systematic review. Twenty-five studies for miR-221 and 17 studies for miR-222 which assessed OS were included in the meta-analysis. High expression of miR-221 and miR-222 significantly predicted poor OS (HR: 1.48, 95% CI: 1.14-1.93, p = 0.003 and HR: 1.90, 95% CI: 1.43-2.54, p < 0.001, respectively). Subgroup analysis revealed that the finding on miR-221 was not as robust as the one on miR-222. Furthermore, high miR-222 expression was also associated with worse progression-free survival and disease-free survival pooled with recurrence-free survival. Conclusions: The meta-analysis demonstrated that high expression of miR-222 is associated with poor prognosis in cancer patients, whereas the significance of miR-221 remains unclear. More work is required to fully elucidate the role of miR-221 and miR-222 in cancer prognosis, particularly in view of the limitations of existing results, including the significant heterogeneity and limited number of studies for some cancers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...